Note

THE APPLICATION OF MÖSSBAUER SPECTROSCOPY TO THE STUDY OF THE INTERACTION OF THE SYSTEMS CuO-Fe₃O₄, Cu₂O-Fe₃O₄ **AND CuO-ZnO-Fe,O,**

R. DIMITROV and B. BOJANOV

P. Hilendarsky University, Plovdiv (Bulgaria)

S. **NICOLOV**

Higher Chemical and TEwhnological Institu le. Sofia (Bulgaria)

(Received 7 December 1978)

In the hydrometallurgical processing of zinc concentrates the more effective recovery of copper and iron is being impeded by the increase in ferrite formation [1,2]. The determination of the phase content of the product **after the concentrate has been roasted is of decisive importance, as is the investigation of the interactions between the zinc, copper and iron oxides. The chemical and X-ray structural analyses and infrared spectroscopy do not always allow the identification of the available phases. The use of Mijssbauer** spectroscopy for these purposes is of great interest. It has proven advantages, compared with the other methods of investigation of complex metallurgical **products [3-51 mentioned.**

It is well known that ZnFe_2O_4 and CuFeO_2 are paramagnetic at room **temperature [6-9]. The Neel temperature** (T_N) **for** ZnFe_2O_4 **is 10.3 K [8]** and for CuFe₂O₄ it is 14.06 K [6]. Zinc ferrite has a typical normal spinel **structure, all octahedral places being occupied by iron ions. If the Mijssbauer spectrum shows two lines at room temperature, this allows an accurate measurement of the quadrupole splitting_ Usually, the quadrupole splitting increases with the increase [7] in the number of impurities. The CuFeO, spectrum at room temperature is a doublet with a quadrupole splitting [lo]** of 0.63 ± 0.003 mm s⁻¹. The CuFe₂O₄ ar.i $\overline{C}u\overline{C}e_5O_8$ spectra are typical **ferrite spectra. The copper ions occupy mainly the octahedral places (B),** while the iron ions occupy both the octa^t edral and the tetrahedral (A) **places** [11] in the spinel CuFe₂O₄. The Neel temperature for CuFe₂O₄ is 1063 **K 1121.**

The application of Mössbauer spectroscopy allows the identification of iron containing the phases: α -Fe₂O₃, γ -Fe₂O₃, Fe₃O₄, CuFeO₂ and ZnFe₂O₄, **which are obtained by the interaction of the systems containing copper.** zinc and iron [5-7,10]. The determination of $CuFe₂O₄$ is complicated by the coincidence of its lines with those of α -Fe₂O₃ [12].

EXPERLhIENTAL

The conditions for heating the oxide systems and the results from the X-ray structural analyses and the metal solubility in 7% sulphuric acid solu- **tion are represented in an earlier work [131 of ours.**

The Mössbauer spectra are taken on a standard Mössbauer spectrometer **working under conditions of constant acceleration and using a multichannel analyser. The error in setting the velocity and the non-linearity of the im**pulse are smaller than 0.01 min s⁻¹. \cos^{57} is used as a source in a Pd matrix **of 20 mCi activity. The isomer shift for all the spectra is given by using the** one for $Na₂Fe(CN)₅NO$ \cdot 2 H₂O as a standard. The Mössbauer lines of the **standard, using our device, have a width of 0.23 mm s-l. The samples represent powder-pressed tablets made from the substance under study and polyvinylalcohol of density 20 mg cm-*.**

The Mössbauer spectra obtained are processed graphically and the over**lapping of the individual phase spectra are reported.**

RESULTS

On heating the mixture of CuO and $Fe₃O₄$ in the ratio 25.57% CuO and 74.43% Fe₃O₄ the phases α -Fe₂O₃, Fe₃O₄ and CuFeO₂ are observed. Fig. **l(a) shows the spectrum (at 293 K) for the system after heating in an inert** $atmosphere$ at 1023 K for 18×10^3 s.

The ratio of the phases obtained is α -Fe₁O₁ : Fe_1O_4 : $CuFeO_4 = 2.8 : 1 : 1$. It is determined approximately by the line intensity of the individual phases, **assuming equal probability for each effect (Table 1). The parameters of the** spectra α -Fe₂O₃ and Fe₃O₃ which were determined initially agree with the **literature values [lo]. The composition of the heated oxide mixtures are**

Fig. 1. Mössbauer spectra (at 293 K) for the systems (a) $CuO-Fe₃O₄$ and (b) $Cu₂O Fe₃O₄$ after heating in an inert atmosphere for 18×10^3 s.

TABLE 1

Miksbauer spectra parameters of the oxide systems

System	Components	Isomer shift $(mm s^{-1})$	Quadrupole sp'tting $(mm s^{-1})$	Intrinsic magnetic field (kOe)
CuO : $Fe3O4 = 1 : 1$	α -Fe ₂ O ₃ $Fe3O4$ a Fe ₃ O ₄ b CuFeO ₂	0.70 ± 0.05 0.63 ± 0.05 0.88 ± 0.05 0.69 ± 0.05	0.20 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 0.62 ± 0.05	520 ± 3 497 ± 3 466 ± 3 0
$Cu2O$: $Fe3O4 = 1:1$	α -Fe ₂ O ₃ Fe ₃ O ₄ CuFeO ₂ CuFe ₂ O ₄	0.72 ± 0.05	0.65 ± 0.05	0
$(CuO + ZnO)$: $Fe3O4 = 1 : 1$	α -Fe ₂ O ₃ Fe ₃ O ₄			
$CuO: ZnO = 1:1$	$\rm ZnFe_2O_4$ Mixed spin.	0.67 ± 0.005 0.88 ± 0.10	0.38 ± 0.05 0.14 ± 0.05	O 378 ± 5
$CuO-ZnO-Fe3O4$ $Cu : Zn : Fe = 17 : 34 : 26$	α -Fe-O ₁ Fe ₃ O ₄ ZnFe ₂ O ₄	0.68 ± 0.05	0.44 ± 0.05	$\mathbf 0$

determined on the basis of these values. The ratio of the components shows that a comparatively small part of the iron is combined with the copper in **the form of CuFeO?. This esplains the high solubility of the copper from the heated misture (82.0%) in a 7% sulphuric acid solution, which is very close** to the solubility of Cu₂O obtained from the heating of CuO [13].

The amount of CuFeO₂, obtained by the interaction of Cu₂O and Fe₃O₄ **is much greater, escept that the esperimental spectrum [Fig. l(b)] shows the presence of a fourth component, which most probably belongs to a** tetragonal $CuFe₂O₄$. The $CuFe₂O₄$ spectrum is a complex one and consists of two 6-line patterns $[10]$. One of them has parameters very close to that of α -Fe₁O₁. That is why it is very difficult to distinguish this ferrite from α -Fe₂O₃ **on the Mössbauer spectrum. The ratio of the phases obtained is CuFeO₂:** $Fe₃O₄$: α -Fe₂O₃: $CuFeO₂ = 3.5 : 1.7 : 1 : 0.7$. This explains why the copper **solubility in a 7% sulphuric acid solution decreases abruptly and is 54.5% for the given case. This shows that CuO dissociation is a comparatively slower** process and longer heating is necessary to obtain CuFeO₂. Perhaps the greater ion radius [14] of Cu⁺ also affects the formation of CuFeO₂, imped**ing its diffusion in the solid phase reaction.**

In the interaction of CuO and $Fe₃O₄$, the Cu²⁺ ions substitute the $Fe²⁺$ ions in the tetrahedral position (B) in Fe₃O₄ forming CuFe₂O₄. In addition, the Fe²⁺ quantity decreases due to their oxidation by the oxygen liberated **in the CuO dissociation. These are the reasons for the decrease in intensity of the 6-line pattern for Fe*'.**

When $Cu₂O$ interacts with $Fe₃O₄$ the intensity of $Fe²⁺$ lines remains rela-

tively high compared with that found from the interaction of CuO and Fe₃O₄. In this case Cu₂O interacts with Fe₂O₃ from the magnetite, forming **CuFeO,. The result of this is the doublet CuFeO, and the relatively weak** lines in the 6-line pattern of Fe^{3+} . The narrowing of the Fe^{2+} 6-line pattern **due to the fading of the intrinsic magnetic field because of the change of the Fe" environment is proof of this.**

The situation is very different when there is ZnO in the systems studied. Figure 2 shows the Mössbauer spectra of the system CuO-ZnO-Fe₃O₄ on heating for 18×10^3 s (a) at 1023 K; (b) at 1223 K (taken at 293 K); (c) at **1223 K (taken at 173 K).**

At the oxide ratio mentioned the doublet ZnFe_2O_4 is observed with an isomer shift 0.67 ± 0.05 mm s⁻¹ and a quadrupole splitting of 0.38 ± 0.05 **mm s-i (Table 1). Regarding the isomer shift and the quadrupole splitting, those obtained for ZnFe,O, at 1023 K agree with the reference data [7]. A new phase, small in quantity, which was characterized by a smaller intrinsic** magnetic field compared with that of $CuFe₂O₄ - 378 \pm 5$ kOe, is obtained in **the spectrum shovm in Fig. 2(a). This phase increases quantitatively at higher heating temperatures [Fig. 2(b)]. The positions of the new phase absorption** lines are: -5.1 ± 0.2 ; -2.0 ± 0.2 ; -0.1 ± 0.1 ; $+1.7 \pm 0.1$; $+3.7 \pm 0.2$; $+7.0 \pm 0.2$ 0.2 (mm s⁻¹). The isomer shift is 0.88 ± 0.1 mm s⁻¹ and the quadrupole split-

Fig. 2. Mössbauer spectra for the system CuO-ZnO-Fe₂O₃ (a) after heating at 1023 K **for 18** x **lo3 s; (b) after heating at 1223 K for 18** x **103 s (taken at 293 K); (c) after heating at 1223 K for 18** X **lo3 s (taken at 173 K).**

Fig. 3. Mössbauer spectra for the system $CuO-ZnO-Fe₃O₄$ (Cu $: Zn : Fe = 17 : 34 : 26$) **taken at 293 K.**

ting is 0.14 ± 0.05 mm s⁻¹. Most probably this phase represents a mixed spinel having the general formula $Cu_x \bar{Z} \bar{n}_y \bar{F}e_{3-x-y}O_4$, where $x + y \ge 1$.

Copper content in the mixed spinel increases with the increase in heating **temperature and the spectrum approaches that of CuFe,O,. That is confirmed by the fact that in the interval 293-173 K the doublet passes to a** line split six times, which shows that the T_N of the spinel is in this interval.

When the heating temperature is increased, the Mössbauer spectra show **non-stoichiometric CcFezO, and ZnFe,O,, containing impurities of substitution. Obtaining a spine1 phase, the content of which depends directly on the** diffusion rate and the crystallization in the individual grains, is also observed **by other authors [151.**

With the increase in copper and zinc content compared with that of iron $(Cu : Zn : Fe = 17 : 34 : 26)$ the interactions in the system $CuO-ZnO-$ Fe₃O₄ lead to an increase in the quantity of α -Fe₂O₄ and the formation of $ZnFe₂O₄$ (Fig. 3). The ratio of α -Fe₂O₃, ZnFe₂O₄ and Fe₃O₄ is 4.6 : 1.3 : 0.8. **The decrease in the solubility of copper shows that CuFe,O, exists as well as** the phases mentioned. The quantity of ZnFe₂O₄ obtained is relatively small and so zinc has comparatively high solubility $($ ~95%) in a 7% sulphuric a 2 id **solution.**

CONCLUSIONS

The processes which take place during the heating of the oxide systems CuO-Fe₃O₄, Cu₂O-Fe₃O₄ and CuO-ZnO-Fe₃O₄ are studied, using Mössbauer spectroscopy. The analysis of the Mössbauer spectra and the interac**tion products allows us to make the following conclusions.**

(1) In the interaction between CuO and Fe304, the oxygen liberated as a result of the CuO dissociation oxidises the $Fe²⁺$ from $Fe₃O₄$. The product of the dissociation ($Cu₂O$) interacts with the product of oxidation ($Fe₂O₃$) and CuFeO₂ forms. In the interaction of Cu₂O and Fe₃O₄ the copper oxide interacts with the $Fe₂O₃$ from the magnetite, forming $CuFeO₂$.

(2) On heating the system CuO-ZnO-Fe304, a zinc spine1 is predominantly formed (ZnFe,O,). On increasing the heating temperature, mixed zinc and copper spinels are obtained. Their T_N is significantly higher than those of ZnFe_2O_4 and CuFeO_2 . T_N is between 173-293 K, depending on their cop-**,er and zinc ratios.**

(3) The conditions for the formation of a minimum quantity of fenites can be established, using the MGssbauer spectra of the calcines produced in the roasting of zinc and copper-zinc concentrates. This is of great importance for improving the results of the hydrometallurgical processing of the **oxide products obtained.**

REFERENCES

- **1 S.S. Naboitchenko and V.I. Smirnov, Gidrometallurgia Medi, Metallurgizdat, Moskva, 1974.**
- **2 IS. Eliseev, A.A. Babadjan, B.V. Lebed, S.S. Naboitchenko and 1-F. Hudiakov, Tsvet. Metall., 3 (1974) 3.**
- **3 A.V. Vaniukov, 1u.B. Voitkovslrii. N.N. Razumovskaia and V-N. Bruek, Tsvet. Metall., 5 (1977) 13.**
- 4 **T.V. Tkatcheva, L.G. Simakova and V.I. Pauker, Tsvet. Metall., 12 (1977) 27.**
- **5 T. Ruskov, Efekt na Miissbauer, Nauka i Izkustvo, Sofia, 1975.**
- **6 A.H. Muir, R.M. Grant and H. Wiedersich, Proceedings of the Conference on the Appli**cation of the Mössbauer Effect, Tihany (Hungary) 1969, p. 557.
- **7 F.K. Lotgering and AM. Van Diepeu, J. Phys. Chem. Solids, 34 (1968) 1369.**
- **8 J. Sawicki, Acta Phys. Pol. A, 45 (1974) 225.**
- **9 B.J. Evans, S.S. Hafner and HP. Weber, J. Chem. Phys., 55 (1971) 5282.**
- **10 V. Goldanskii, Himitcheskie Primenenia Messbauerovskoi Spectroskopii, Mir, Moskva, 1970.**
- **11 A.H. Muir and H. Wiederfsich, Bull. Am. Phys. Sot., 14 (1966) 49.**
- **12 B.J. Evans and S.S. Hafner, J. Phys. Chem. Solids, 29 (1968) 1573.**
- **13 B. Bojanov, R. Dimitrov and V. Karoleva, Izsledvane Vzaimodeistviata v Sistemite CuO-Fes04, Cu2O-Fes04 i CuO-ZnO-Fes04, Nautchni trudove na PU P. Hilendarski, in press.**
- **14 G-1. Juravlev, Himia i Technologia Ferritov, Himia, Leningtadskoe Otdelenie, 1970.**
- **15 R. Stoitseva and V. Karoleva, Metalurgia (Sofia), 4 (1976) 19.**